home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Language/OS - Multiplatform Resource Library
/
LANGUAGE OS.iso
/
b
/
b.lha
/
B
/
src
/
bint
/
b1nuI.c
< prev
next >
Wrap
C/C++ Source or Header
|
1988-11-24
|
8KB
|
316 lines
/* Copyright (c) Stichting Mathematisch Centrum, Amsterdam, 1985. */
/*
$Header: b1nuI.c,v 1.4 85/08/22 16:51:13 timo Exp $
*/
/* Multi-precision integer arithmetic */
#include "b.h"
#include "b1obj.h"
#include "b1num.h"
#include "b0con.h"
#include "b3err.h"
/*
* Number representation:
* ======================
*
* (Think of BASE = 10 for ordinary decimal notation.)
* A number is a sequence of N "digits" b1, b2, ..., bN
* where each bi is in {0..BASE-1}, except for negative numbers,
* where bN = -1.
* The number represented by b1, ..., bN is
* b1*BASE**(N-1) + b2*BASE**(N-2) + ... + bN .
* The base BASE is chosen so that multiplication of two positive
* integers up to BASE-1 can be multiplied exactly using double
* precision floating point arithmetic.
* Also it must be possible to add two long integers between
* -BASE and +BASE (exclusive), giving a result between -2BASE and
* +2BASE.
* BASE must be even (so we can easily decide whether the whole
* number is even), and positive (to avoid all kinds of other trouble).
* Presently, it is restricted to a power of 10 by the I/O-conversion
* routines (file "b1nuC.c").
*
* Canonical representation:
* bN is never zero (for the number zero itself, N is zero).
* If bN is -1, b[N-1] is never BASE-1 .
* All operands are assumed te be in canonical representation.
* Routine "int_canon" brings a number in canonical representation.
*
* Mapping to C objects:
* A "digit" is an integer of type "digit", probably an "int".
* A number is represented as a "B-integer", i.e. something
* of type "integer" (which is actually a pointer to some struct).
* The number of digits N is extracted through the macro Length(v).
* The i-th digit is extracted through the macro Digit(v,N-i).
* (So in C, we count in a backwards direction from 0 ... n-1 !)
* A number is created through a call to grab_num(N), which sets
* N zero digits (thus not in canonical form!).
*/
/*
* Bring an integer into canonical form.
* Make a SmallInt if at all possible.
* NB: Work done by int_canon is duplicated by mk_integer for optimization;
* if the strategy here changes, look at mk_integer, too!
*/
Visible integer int_canon(v) integer v; {
register int i;
if (IsSmallInt(v)) return v;
for (i = Length(v) - 1; i >= 0 && Digit(v,i) == 0; --i)
;
if (i < 0) {
release((value) v);
return int_0;
}
if (i == 0) {
digit dig = Digit(v,0);
release((value) v);
return (integer) MkSmallInt(dig);
}
if (i > 0 && Digit(v,i) == -1) {
while (i > 0 && Digit(v, i-1) == BASE-1) --i;
if (i == 0) {
release((value) v);
return (integer) MkSmallInt(-1);
}
if (i == 1) {
digit dig = Digit(v,0) - BASE;
release((value) v);
return (integer) MkSmallInt(dig);
}
Digit(v,i) = -1;
}
if (i+1 < Length(v)) return (integer) regrab_num((value) v, i+1);
return v;
}
/* General add/subtract subroutine */
typedef double twodigit; /* Might be long on 16 bit machines */
/* Should be in b0con.h */
Hidden twodigit fmodulo(x, y) twodigit x, y; {
return x - y * (twodigit) floor((double)x / (double)y);
}
Visible Procedure dig_gadd(to, nto, from, nfrom, ffactor)
digit *to, *from; intlet nto, nfrom; digit ffactor; {
twodigit carry= 0;
twodigit factor= ffactor;
digit save;
nto -= nfrom;
if (nto < 0)
syserr(MESS(1000, "dig_gadd: nto < nfrom"));
for (; nfrom > 0; ++to, ++from, --nfrom) {
carry += *to + *from * factor;
*to= save= fmodulo(carry, (twodigit)BASE);
carry= (carry-save) / BASE;
}
for (; nto > 0; ++to, --nto) {
if (carry == 0)
return;
carry += *to;
*to= save= fmodulo(carry, (twodigit)BASE);
carry= (carry-save) / BASE;
}
if (carry != 0)
to[-1] += carry*BASE; /* Assume it's -1 */
}
/* Sum or difference of two integers */
/* Should have its own version of dig-gadd without double precision */
Visible integer int_gadd(v, w, factor) integer v, w; intlet factor; {
struct integer vv, ww;
integer s;
int len, lenv, i;
FreezeSmallInt(v, vv);
FreezeSmallInt(w, ww);
lenv= len= Length(v);
if (Length(w) > len)
len= Length(w);
++len;
s= (integer) grab_num(len);
for (i= 0; i < lenv; ++i)
Digit(s, i)= Digit(v, i);
for (; i < len; ++i)
Digit(s, i)= 0;
dig_gadd(&Digit(s, 0), len, &Digit(w, 0), Length(w), (digit)factor);
return int_canon(s);
}
/* Product of two integers */
Visible integer int_prod(v, w) integer v, w; {
int i;
integer a;
struct integer vv, ww;
if (v == int_0 || w == int_0) return int_0;
if (v == int_1) return (integer) Copy(w);
if (w == int_1) return (integer) Copy(v);
FreezeSmallInt(v, vv);
FreezeSmallInt(w, ww);
a = (integer) grab_num(Length(v) + Length(w));
for (i= Length(a)-1; i >= 0; --i)
Digit(a, i)= 0;
for (i = 0; i < Length(v) && !interrupted; ++i)
dig_gadd(&Digit(a, i), Length(w)+1, &Digit(w, 0), Length(w),
Digit(v, i));
return int_canon(a);
}
/* Compare two integers */
Visible relation int_comp(v, w) integer v, w; {
int sv, sw;
register int i;
struct integer vv, ww;
/* 1. Compare pointers and equal SmallInts */
if (v == w) return 0;
/* 1a. Handle SmallInts */
if (IsSmallInt(v) && IsSmallInt(w))
return SmallIntVal(v) - SmallIntVal(w);
FreezeSmallInt(v, vv);
FreezeSmallInt(w, ww);
/* 2. Extract signs */
sv = Length(v)==0 ? 0 : Digit(v,Length(v)-1)<0 ? -1 : 1;
sw = Length(w)==0 ? 0 : Digit(w,Length(w)-1)<0 ? -1 : 1;
/* 3. Compare signs */
if (sv != sw) return (sv>sw) - (sv<sw);
/* 4. Compare sizes */
if (Length(v) != Length(w))
return sv * ( (Length(v)>Length(w)) - (Length(v)<Length(w)) );
/* 5. Compare individual digits */
for (i = Length(v)-1; i >= 0 && Digit(v,i) == Digit(w,i); --i)
;
/* 6. All digits equal? */
if (i < 0) return 0; /* Yes */
/* 7. Compare leftmost different digits */
if (Digit(v,i) < Digit(w,i)) return -1;
return 1;
}
/* Construct an integer out of a floating point number */
#define GRAN 8 /* Granularity used when requesting more storage */
/* MOVE TO MEM! */
Visible integer mk_int(x) double x; {
register integer a;
integer b;
register int i, j;
int negate;
if (MinSmallInt <= x && x <= MaxSmallInt)
return (integer) MkSmallInt((int)x);
a = (integer) grab_num(1);
negate = x < 0 ? 1 : 0;
if (negate) x = -x;
for (i = 0; x != 0; ++i) {
double z = floor(x/BASE);
digit save = Modulo((digit)(x-z*BASE), BASE);
if (i >= Length(a)) {
a = (integer) regrab_num((value) a, Length(a)+GRAN);
for (j = Length(a)-1; j > i; --j)
Digit(a,j) = 0; /* clear higher digits */
}
Digit(a,i) = save;
x = floor((x-save)/BASE);
}
if (negate) {
b = int_neg(a);
release((value) a);
return b;
}
return int_canon(a);
}
/* Construct an integer out of a C int. Like mk_int, but optimized. */
Visible value mk_integer(x) int x; {
if (MinSmallInt <= x && x <= MaxSmallInt) return MkSmallInt(x);
return (value) mk_int((double)x);
}
/* Efficiently compute 10**n as a B integer, where n is a C int >= 0 */
Visible integer int_tento(n) int n; {
integer i;
digit msd = 1;
if (n < 0) syserr(MESS(1001, "int_tento(-n)"));
if (n < tenlogBASE) {
while (n != 0) msd *= 10, --n;
return (integer) MkSmallInt(msd);
}
i = (integer) grab_num(1 + (int)(n/tenlogBASE));
n %= tenlogBASE;
while (n != 0) msd *= 10, --n;
Digit(i, Length(i)-1) = msd;
return i;
}
#ifdef NOT_USED
/* Approximate ceiling(10 log abs(u/v)), as C int.
It only works for v > 0, u, v both integers.
The result may be one too large or too small */
Visible int scale(u, v) integer u, v; {
int s;
double z;
struct integer uu, vv;
if (Msd(v) <= 0) syserr(MESS(1002, "scale(u,v<=0)"));
if (u == int_0) return 0; /* `Don't care' case */
FreezeSmallInt(u, uu);
FreezeSmallInt(v, vv);
s = (Length(u) - Length(v)) * tenlogBASE;
if (Digit(u, Length(u)-1) >= 0) z = Digit(u, Length(u)-1);
else {
s -= tenlogBASE;
if (Length(u) == 1) z = 1;
else z = BASE - Digit(u, Length(u)-2);
}
z /= Digit(v, Length(v)-1);
while (z >= 10) z /= 10, ++s;
while (z < 1) z *= 10, --s;
return s;
}
#endif NOT_USED